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Abstract. A Dirac equation in a covariant form with respect to proper orthochronous rotations in
(4+1)-dimensional pseudo-orthogonal space, i.e. Minkowski space extended by one real dimension
is introduced. It contains a five-vector potential with a non-electromagnetic fifth component. The
invariance of this equation under theCPT transformation is conditioned by the assumption that the
real fifth coordinate changes its sign under charge conjugation, and that it simultaneously changes
its sign either under time reversal or under space inversion. The energy levels of an electron under
the simultaneous action of Coulomb and central gravitational fields are determined. To this end,
(1) new eigenspinors of the total angular momentum operator are derived, with non-zero entries in
the first and fourth or in the second and third row of the column matrix and (2) a scalar function is
constructed from doubly-periodic Jacobian elliptic functions which, in the limit of the vanishing
modulus of the elliptic functions, replaces the function exp(iωt) in the stationary-state solutions.
The iterated five-dimensional equation contains the ten components of the antisymmetric field
tensor. It also contains a term determining the potential energy operator of electron spin density
in a non-electromagnetic field. The Pauli equation is derived from the five-dimensional equation,
with the transformational characteristics of the original equation. It contains a spin–orbit coupling
term depending on the non-electromagnetic potential.

1. Introduction

Dirac’s paper [1] on the electron wave equation in de Sitter space contains an alternative form
of his equation in Minkowski space, namely

[γα(∂α − iaα)− iγ5κ]9 = 0 (1)

with γ5 = γ1γ2γ3γ4 andaα = (e/h̄c)Aα, α = 1, . . . ,4, with e denoting the electron charge
andAα denoting the components of the four-potential, wherex1, x2, x3 are real andx4 = ict ,
with c denoting the speed of light in the vacuum, andκ = mc/h̄ with m denoting the electron
rest mass. This equation appears by Dirac [1] for the free-electron case as the unnumbered
equation at the bottom of p 663, and for an electron in an external field it follows from his
equation (33) on p 664. In this paper a five-dimensional form of the Dirac equation is proposed
on the basis of equation (1).

In the investigations of the electron wave equation preceding Dirac’s paper [1], the fifth
dimension was considered by a number of authors. Klein [2] introduced a five-dimensional
wave equation in a covariant form, which furnished a link between five-dimensional general
relativity in the Kaluza–Klein form [3] and quantum mechanics. His equation contains terms
depending on the derivatives with respect to the fifth coordinate. These terms are neglected
and, on the basis of certain assumptions, the present Klein–Gordon equation is deduced. The
fifth dimension appears in the investigations of spinors in five-dimensional projective space and

0305-4470/99/234257+21$19.50 © 1999 IOP Publishing Ltd 4257



4258 J Kociński

of the electron wave equation by Pauli and Solomon [4] and in a series of papers by Schouten
and van Dantzig and Schouten from which we name [5–7] and by Pauli [8]. Pauli’s aim was
to demonstrate that the projective differential geometry with five homogeneous coordinates
furnished a general method for a unified presentation of gravitation and electromagnetism on
the level of classical field theory and that it can be applied in quantum theory. He considered a
five-dimensional projective space of real coordinates, spanned by the five anticommuting
matricesγ1, γ2, γ3, γ4, and γ5 = γ1γ2γ3γ4, which fulfil the defining condition of the
sixteen-dimensional Clifford algebra. He considered the group of four-dimensional matrices
S depending on the rotation angles in the five-dimensional space of homogeneous coordinates
and the four-component spinors which under five-dimensional rotations transform according
to those matricesS. Owing to the irreducibility of theS matrices, these spinors cannot be
decomposed into a pair of two-component spinors. Such a decomposition takes place only
when the subgroup of four-dimensional rotations is considered. The existence of the irrepS

furnished for Pauli the departure point for the application of the homogeneous coordinates
method to the derivation of Dirac’s equation. The relation between a class of relativistic wave
equations, of which the Dirac equation is the simplest, and the groups in five dimensions, in
particular theSO(4, 1) group, was discussed by Lubański [9]. Relativistically invariant wave
equations for particles with spin greater than 1/2 were investigated by Bhabha [10, 11]. His
basic idea was to introduce into this area the real Lie algebraso(4, 1). To every representation
of so(4, 1) corresponds a Bhabha relativistic wave equation. The free-electron Dirac equation
is a particular example of a Bhabha equation corresponding to the four-dimensional irreducible
representation of the real Lie algebraso(4, 1). The investigations in Dirac’s paper [1] were
further developed by G̈ursey and Lee [12]. Rotation groups in five and six dimensions
were considered with reference to the Dirac equation by Fronsdal [13], by Barut [14] and
by Bakri [15]. Bracken and Cohn [16, 17] studied the connection between the free-electron
Dirac equation and theSO(4, 1) group. The free-electron Dirac equation was written in
a five-dimensional form and the matrix transformations, belonging to theSO(4, 1) group,
which preserve the Lorentz-invariant scalar product of the Dirac spinors were determined.
A unified group-theoretical description of a certain type of canonical momentum-dependent
transformations was given. A higher-dimensional form of Dirac equation was considered by
Witten [18, 19] and that form is of interest in the developments of field theory [20].

In section 2 we consider equation (1) for the free-electron case and introduce into it
the termγ5∂/∂x5 with real x5. The requirement of invariance under the group of local
gauge transformations in the five-dimensional pseudo-orthogonal space of the respective free-
electron Lagrangian, leads to the Dirac equation depending on a five-vector potential, with
a non-electromagnetic fifth component. This equation is covariant with respect to proper
orthochronous rotations in (4 + 1)-dimensional space.

In section 3 we derive the iterated equation which contains the five-dimensional form
of the Klein–Gordon equation. This equation also contains the components of the five-
dimensional rotation of the potential five-vector, which determines the electromagnetic and
non-electromagnetic fields. There appears a term which has the meaning of the potential
energy operator of electron spin density in a non-electromagnetic field.

The conditions of invariance of the five-dimensional equation under the combined
transformations of charge conjugation, space inversion and time reversal are examined in
section 4. We find that the fifth coordinate has to change its sign under charge conjugation and
that simultaneously it has to change its sign either under time reversal or under space inversion.

In section 5 we derive a new form of eigenspinors of the total angular momentum operator
of an electron. These spinors are indispensable for the solution of the electron-in-a-central-field
problem, whenγ5 appears in the Dirac equation.
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The question arises about the role of the fifth coordinate in measurable quantities calculated
on the basis of the five-dimensional equation. This is essential if we do not want to utilize the
fifth coordinate only as a vehicle for introducing the fifth potential component and subsequently
to assume independence of the potentials and of the spinors on it. We are dealing with
an analogous situation in Nordström’s theory [3, 21], where the fifth dimension serves for
introducing the gravitational potential and after that the fifth coordinate is removed from
equations by assuming that the derivatives with respect to it vanish. In the Kaluza–Klein
type theories [3] the fifth dimension is compact. Since we are dealing with a flat space, that
assumption is ruled out. We can, however, examine the consequences of the fifth coordinate
being even under parity operation and odd under time reversal, passing from the coordinates
x4 = ict and realx5 to a complex variablet +iu, with realt andu, and withu even under charge
conjugation. The complex variablet + iu can be the argument of doubly-periodic Jacobian
elliptic functions. This means that the function exp(iωt) determining the time dependence
of a stationary state in Minkowski space, will be replaced in (4 + 1)-dimensional pseudo-
orthogonal space by a function constructed from Jacobian elliptic functions of the arguments
(ωt± iω′u)/2, with realω andω′. Foru = 0 and a vanishing modulus of the elliptic functions
that function reduces to exp(iωt). If the frequencyω′ is much smaller than the frequencyω,
i.e. in the limit ofω′/ω→ 0, which implies a vanishing modulus of the elliptic functions, the
periodicity in theu-variable is removed. The influence of the fifth coordinate on the energy
levels of an electron in Coulomb and central-gravitational field is proportional to the square of
the modulus of the elliptic functions. Sections 6 and 7 are devoted to this problem.

In section 8 we derive the Pauli equation from the five-dimensional Dirac equation. The
Pauli equation now contains terms connected with the non-electromagnetic fifth component
of the five-potential.

Some of the results of this paper have been presented in [22].

2. Dirac equation in five dimensions

We consider equation (1) in the case of a free electron, i.e. foraµ = 0, µ = 1, . . . ,4, and
include into it the termγ5∂/∂x5, with a real coordinatex5 obtaining the equation

(γµ∂µ − iγ5κ)9 = 0 (2)

where the indexµ varies from one to five and the spinor9 depends on the components of the
five-vector Ex = (x1, x2, x3, x4, x5), referred to the coordinate axes of (4 + 1)-dimensional
pseudo-orthogonal space, i.e. Minkowski space extended by one real dimension. In the
following we assume that a matrix representation is substituted for theγµ.

We now require the invariance under the local gauge transformations in the (4 + 1)-
dimensional space, of the Lagrangian densityL(Ex) connected with equation (2), i.e. of

L(Ex) = −h̄c9†(Ex)γ4[γµ∂µ9(Ex)− iγ5κ9(Ex)] (3)

where9† denotes the Hermitean-conjugate spinor.
It can be verified that the Euler–Lagrange equation for the adjoint spinor9 = 9†γ4

leads to equation (2). This Lagrangian is invariant under the global gauge transformation:
9 → 9 exp(iβ) for any real,Ex-independent parameterβ. The invariance of the Lagrangian
in equation (3) under the local gauge transformation

9 → 9 exp(iβ(Ex)) (4)

whereβ(Ex) is an arbitrary, real, dimensionless, differentiable scalar function of the five-vector
Ex, is conditioned by the replacement of the derivatives∂µ in (3) by

Dµ = ∂µ − igµ
h̄c
Aµ(Ex) µ = 1, . . . ,5 (5)
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whereAµ(Ex), µ = 1, . . . ,5, form a 5-vector andgµ are real constants, provided thatAµ(Ex)
undergo a transformation of the form

Aµ(Ex)→ A′µ(Ex) = Aµ(Ex) +
h̄c

gµ
∂µβ(Ex). (6)

The modified Lagrangian densityLmod(Ex) has the form

Lmod(Ex) = −h̄c9†(Ex)γ4[γµ∂µ9(Ex)− iγ5κ9(Ex)] + i9†(Ex)γ4γµgµAµ(Ex)9(Ex). (7)

With gµ = e, the electron charge, forµ = 1, . . . ,5, we identify the 5-vector potential
components:

(A1, A2, A3, A4, A5) = (Ax,Ay,Az, iϕ,mχ/e) (8)

with m denoting electron rest mass, whereAx,Ay,Az are the Cartesian components of
the electromagnetic vector potential,ϕ is the scalar electromagnetic potential andχ is a
real non-electromagnetic scalar potential. With the modified Lagrangian in (7), from the
Euler–Lagrange equation for the adjoint spinor9, we obtain the five-dimensional form of the
Dirac equation in external fields

[γµ(∂µ − iaµ)− iγ5κ]9 = 0 (9)

whereaµ, µ = 1, . . . ,4 are those in (1) anda5 = mχ/h̄c. The covariance of (9) under five-
dimensional proper orthochronous rotations in (4 + 1)-dimensional space can be demonstrated
without introducing a matrix representation for theγµ following the argument in [23]. We
write: aµ = �µ, µ = 1, . . . ,4 anda5 + κ = �5, and then (9) takes the form

γν(∂ν − i�ν)9 = 0. (10)

In the rotated coordinate system we are dealing with the ‘primed’ quantities∂ ′µ and�′µ which
are 5-vectors, and with the spinor9 ′(Ex ′) = T169(Ex), where the transformationT16 depends
on the elementsrµν of the five-dimensional pseudo-orthogonal rotation matrix and on the
basis elements of the Clifford algebra. Rewriting (10) in the rotated coordinate system and
subsequently multiplying it from the left-hand side by the inverseT −1

16 of the transformation
T16, we obtain the equation

(T −1
16 γµ∂

′
µT16− iT −1

16 γµ�
′
µT16)9(Ex) = 0. (11)

On the other hand, expressing∂ν and�ν in (10) through the ‘primed’ quantities∂ ′µ and�′µ we
obtain from it the equation

(γνrµν∂
′
µ − iγνrµν�

′
µ)9(Ex) = 0. (12)

Comparing (11) and (12) we find the covariance condition

T −1
16 γµT16 = rµνγν. (13)

By the same token we have proved the covariance of (9) under rotations in the Minkowski
subspace and in the subspace spanned by the coordinatesx1, x2, x3 andx5. The Cayley–Klein
parameters for proper, orthochronous rotations in (4+1)-dimensional pseudo-orthogonal space
were determined in [24].

We determine the adjoint equation in the manner of [23], without introducing an irrep of
the Clifford algebra. Writing

M = γµ(∂µ − iaµ)− iγ5κ (14)

for the operator in (9), we define the adjoint operatorN which acts to the left with the help of
the equality

u(Mu)− (uN)u = ∂µSµ (15)



Five-dimensional Dirac equation 4261

for the divergence of the 5-vectorES, whereu denotes the function adjoint with respect to the
functionu which has the form

u = c0(Ex) + γ1c1(Ex) + · · · + γ1γ2γ3γ4c15(Ex) (16)

wherec0(Ex), . . . , c15(Ex) are complex functions of the 5-vectorEx. To obtain the right-hand side
of (15) we have to assume that the operatorN of the adjoint equation is equal to

N = −(∂µ + iaµ)γµ − iγ5κ (17)

and, following [23], reverse inu the sequence ofγ s in all γ -products, together with the
replacements

γ1, γ2, γ3, γ4, i −→ −γ1,−γ2,−γ3, γ4,−i (18)

which implies that in these productsγ5→−γ5. Whenu andu are the solutions of the equation
Mu = 0 and the adjoint equation

uN = 0 (19)

respectively, we obtain from (15) the continuity equation

∂µSµ = 0 (20)

with the customary definition of the components of the 5-vectorES
Sµ = uγµu. (21)

With a matrix irrep for theγ s we haveu→ 9†γ4.
Assuming thataµ = 0,µ = 1, 2, 3, and thata4 anda5 are central fields we obtain from

(9) the Hamiltonian in the form

H = h̄c
3∑
k=1

γ4γk∂k + V − iγ4γ5(W +mc2) (22)

whereV (r) = −ieA4(r) andW(r) = eA5(r). For this case (9) can be rewritten in the form

H9(Er, x4, x5) = −h̄c(∂4 + γ4γ5∂5)9(Er, x4, x5). (23)

It can be verified that the total angular momentum operatorsJz = Lz + h̄σz/2 and EJ 2 commute
with the Hamiltonian operator in (22) as well as with the respective operatorM in (14). The
operatorK

K = h̄[(Er × grad) · Eγ − 1]γ4 (24)

with Eγ = (γ1, γ2, γ3), (see [23, 25, 26]), does not commute with the Hamiltonian in (22), since
γ4 does not commute withγ4γ5.

3. The iterated equation

We follow the argument in [23] and act on (9) from the left side with the operatorγνDν− iγ5κ,
with Dν = (∂ν − iaν), thus obtaining the equation

[γνγµDνDµ − 2iκ(∂5− ia5)− κ2]9 = 0. (25)

The first term in the square brackets of this equation forµ = ν, together with the term−κ2,
yields the five-dimensional form of the Klein–Gordon equation[ 5∑

µ=1

D2
µ − κ2

]
9 = 0. (26)
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Forµ 6= ν we obtain from the first term in the square brackets of (25) the expressions

−iγµγν(∂µaν − ∂νaµ)9. (27)

The term in the brackets in (27) is a component of the five-dimensional rotation of the 5-vector
EA = (A1, A2, A3, A4, A5) in (8), multiplied bye/h̄c. In a Cartesian coordinate system, with
(A1, A2, A3) = (Ax,Ay,Az) we obtain the magnetic induction components:

∂µAν − ∂νAµ = Bρ µ, ν, ρ = 1, 2, 3 (28)

and the electric field components:

∂µA4 − ∂4Aµ = −iEµ µ = 1, 2, 3. (29)

We further have

∂µA5− ∂5Aµ = −Gµ µ = 1, 2, 3 (30)

and forµ = 4 andν = 5

∂4A5− ∂5A4 = −iG0 (31)

whereGµ andG0 are real components of new fields connected with electromagnetic and
non-electromagnetic potential. The signs on the right-hand sides of (30) and (31) are written
by analogy with (29), however, they have to be the same if Maxwell–Nordström equations
[3, 21] for the electromagnetic and gravitational field are to follow from (28) through (31).
The second-rank antisymmetric tensor given in (28) through (31) is covariant with respect to
proper, orthochronous rotations in (4+1)-dimensional pseudo-orthogonal space. The behaviour
of the tensor components in (30) and (31) under space inversion and time reversal is determined
in section 4. The term 2iκ∂5 in the square brackets in (25) will be examined in section 6. The
term−2κa5 is another term connected with the fifth dimension.

We now consider the operator in (27) forµ = 1, 2, 3, 4 andν = 5. Dividing this operator
by 2m/h̄2 we obtain the operator

ih̄2

2m

4∑
µ=1

γ5γµ

(
m

h̄c
∂µχ − ∂5aµ

)
(32)

which has the dimension of energy. Whenaµ, µ = 1, 2, 3, 4 are independent ofx5 andχ is
independent ofx4 we obtain from (32) the operator of the form

h̄

2c
γ4Eσ · gradχ(Er) (33)

since iγ5γ1 = −iγ4γ2γ3 = γ4σx , etc. In (33) we are dealing with the potential energy operator
of the electron spin density in a non-electromagnetic scalar field. This term does not appear
in the Pauli equation which will be derived in section 8. The reason for this is that the Pauli
equation is connected with the quaternion group, while the iterated Dirac equation in five
dimensions, owing to the presence ofγ5 in equation (32) requires the sedenion group. In the
Minkowski space, the iterated Dirac equation is connected with the biquaternion group [23].

4. The invariance underCPT transformation

The basic assumption is that the fifth dimension can be affected by the operations of charge
conjugationC, space inversionP and time reversalT . Consequently, these operations, apart
from their customary action in four-dimensional spacetime may also influencex5 anda5 in the
five-dimensional form of the Dirac equation in (9). We will examine on which assumptions
concerning the behaviour ofx5 anda5, the invariance of that equation under theCPT operation,
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extended on the fifth dimension, can be achieved. If that invariance could not be obtained with
any assumptions about the behaviour ofx5 anda5 under the operationsC, P andT then, as it
seems, the five-dimensional equation in (9) would not necessarily be disproved. If, however,
that invariance takes place, provided thatx5 anda5 behave under the operationsC, P andT
in a definite way, this may be interpreted as a hint that the invariance requirement is justified.
The respective properties ofx5 can be essential in an attempt at interpreting the role of the fifth
dimension in the Dirac equation in (9).

In the demonstration of the invariance of (9) under the extendedCPT transformation we
shall utilize the irrep for theγαs in (59) of section 5. Our mode of reasoning will be analogous
to that in [27, 29].

The postulated charge-conjugate equation with the respect to (9) has the form

[γα(∂α + iaα)− γ5(∂5 + ia5)− iγ5κ]9c = 0 (34)

whereα varies from one to four, with9c = C9, whereC denotes the charge conjugation
operation. In (34) we have assumed thatx5 is odd anda5 is even under charge conjugation

Cx5 = −x5C Ca5 = a5C. (35)

Equations (35) are the necessary condition for the required equivalence of the charge-conjugate
equation with the adjoint equation in (19). We consider the adjoint equation (19) in the matrix
form, with theγαs in (59) and withu = 9†γ4. We multiply this equation by (−1), transpose
it and subsequently multiply the transposed equation from the left side by a still undetermined
product ofγαs denoted byF , thus obtaining the equation

[(∂µ + iaµ)F γ̃µγ̃4 + iF γ̃5γ̃4κ]9∗ = 0 (36)

whereµ varies from one to five, and̃γµ denotes a transposed matrix and9∗ denotes the
complex conjugate spinor. The charge-conjugate equation (34) turns into (36) if we have

F γ̃αγ̃49
∗ = γα9c α = 1, . . . ,4 (37)

and

F γ̃5γ̃49
∗ = −γ59c (38)

or

9c = −γ5F γ̃5γ̃49
∗. (39)

From (37) and (38) we obtain the condition forF

γ5F γ̃α = γ̃αFγ5 α = 1, . . . ,4. (40)

We further require that

9†
c9c = 9†9 = (9†9)∗ (41)

and from (39) and (41) find the second condition forF

γ4γ5F
†Fγ5γ4 = 1 (42)

whereF † denotes the Hermitean conjugate ofF , from which it follows that

F †F = 1. (43)

From (40) and (43) we finally find that

F = γ2γ3 (44)

which fulfils (43). From (39) and (44) we obtain the expression for the charge-conjugate spinor

9c = γ1γ59
∗ = γ1γ5K9 = C9 (45)

whereK denotes the conjugate-complex operation.
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If we have assumed thatCx5 = x5C andCa5 = −a5C, which would require ana5

depending on the electron charge, we would have obtainedF = 0, which excludes the
equivalence of (19) and (34).

At this point the argument bifurcates depending on whether the space inversion is delimited
to the coordinatesx1,x2,x3 or extended onx5. We firstly consider the case when space inversion
does not affectx5. The customary parity operation applied toEr and toaα, α = 1, . . . ,4, is
supplemented with the respective rules:

Px5 = x5P Pa5 = a5P. (46)

Consequently, under the parity operationP , (9) turns into the equation[
−

3∑
k=1

γk(∂k − iak) +
5∑

m=4

γm(∂m − iam)− iγ5κ

]
P9 = 0. (47)

Writing P9 = D9, with D denoting an undetermined product ofγµs which anticommutes
with γk, k = 1, 2, 3, and at the same time commutes withγ4 andγ5, which is required for
transforming (47) to its original form (9), we can verify that such aD does not exist. This
means that the five-dimensional form of the Dirac equation in (9) is not invariant under the
space-inversion operation. However, we will accept as the definition of action of the parity
operation on the spinor9 the equality

P9(Er, x4, x5) = γ49(−Er, x4, x5) (48)

which, withoutx5, implies the invariance under the space-inversion operation of the original
form of the Dirac equation (58). Equation (48) will be assumed in the following.

We now consider the charge-conjugate equation (34) with the spinor in (45) and utilizing
(48) act on it with the parity operationP thus obtaining the equation

[γµ(∂µ + iaµ) + iγ5κ]9c = 0 (49)

whereµ varies from one to five. We now assume thatx5 is odd anda5 is even under the time
reversal operation

T x5 = −x5T T a5 = a5T . (50)

Under the time-reversal operation (49) then takes the form[ 3∑
k=1

γk(∂k − iak)−
5∑

m=4

γm(∂m − iam) + iγ5κ

]
T9c = 0. (51)

Equation (51) turns into (9) ifT9c = G9, withGγk = γkG, k = 1, 2, 3, andGγm = −γmG,
m = 4, 5, which implies thatG = γ1γ2γ3. Consequently, the operationCPT does not alter
(9). FromT9c = γ1γ2γ39 and9c given in (45) we obtainT = γ4γ1K with T 2 = −1. It
can be verified that when equations (46) are assumed the five-dimensional form of the Dirac
equation is invariant under theCPT transformation only on the assumption that the fifth
coordinate is odd under time reversal and under charge conjugation.

When space inversion operation affectsx5, we replace (46) by the respective conditions:

Px5 = −x5P Pa5 = a5P (52)

and then under the (four-dimensional) parity operation (9) takes the form[
−

3∑
k=1

γk(∂k − iak) + γ4(∂4 − ia4) + γ5(−∂5− ia5)− iγ5κ

]
P9 = 0 (53)
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and, as it was with (47), it is not invariant. However, by analogy with (48) we accept as the
definition of action of the parity operation on the spinor9 the equality

P9(Er, x4, x5) = γ49(−Er, x4,−x5). (54)

We now consider the charge-conjugate (34) with the spinor in (45) and act on it with the
customary parity operation supplemented with (52) and (54), thus obtaining the equation[ 4∑

α=1

γα(∂α + iaα)− γ5(∂5− ia5) + iγ5κ

]
9c = 0. (55)

If we now assume that bothx5 anda5 are even under the time reversal operation

T x5 = x5T T a5 = a5T (56)

and apply that operation to (55), we again obtain (51) which turns into (9). Consequently,
the operationCPT with the action ofP extended in (52), and with (56) supplementing the
customary action of the time reversal operation, does not alter (9).

It is seen that the invariance of the five-dimensional form of the Dirac equation can
be achieved on two assumptions: either withx5 even underP -operation and odd under
T -operation, i.e. with the conditions in (46) and (50), or withx5 odd underP -operation
and even underT -operation, i.e. with the conditions in (52) and (56). In both cases the odd
character ofx5 under charge conjugation, i.e. the conditions in (35) are indispensable.

We now can determine the behaviour of the field tensor components in (30) and (31) of
section 3. Ifx5 is even under space inversion and odd under time reversal ((46) and (50)), then
underP - or T -operation the left-hand sides of (30) and (31) have a definite character: they
either change their sign or not. Ifx5 is odd underP -operation and even underT -operation
((52) and (56)), the left-hand sides of (30) and (31) do not have a definite character, since under
each of these operations, in both equations one term changes its sign while the other does not.
This property of the field tensor seems to speak in favour ofx5 being even underP -operation
and odd underT -operation. These two properties of the fifth coordinate will represent the
starting point of section 6.

5. The eigenspinors of the total angular momentum operator

For an electron in the Coulomb field the integration of the alternative form of the Dirac equation
in (1) or of (9), even without the term(∂5− ia5), cannot be accomplished with the help of the
eigenspinors constructed from the two-component eigenspinors of the Pauli equation. This
is seen when a standard representation for theγαs is introduced into (1). To this end we will
utilize the matrices assigned toγ1, γ2, γ3 andγ4 on the p 369 of [27] or p 121 of [28], or the
matrices on the p 58 of [25] after the multiplication by(−i). With aµ = 0, µ = 1, 2, 3 and
a4 = iV/h̄c, with thex4-dependence of the spinor in the form exp(−Ex4/h̄c), in the Cartesian
coordinate system, we then obtain from (1) the set of equations:

(∂x − i∂y)φ4 + ∂zφ3− i
E − V
h̄c

φ1− κφ3 = 0

(∂x + i∂y)φ3− ∂zφ4 − i
E − V
h̄c

φ2 − κφ4 = 0

−(∂x − i∂y)φ2 − ∂zφ1 + i
E − V
h̄c

φ3− κφ1 = 0

−(∂x + i∂y)φ1 + ∂zφ2 + i
E − V
h̄c

φ4 − κφ2 = 0 (57)
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with φα, α = 1, . . . ,4 denoting the space-dependent part of the spinor components, which
differs in the indices of the spinor components connected with the mass termκ, from the set
of equations which would have been obtained from the original Dirac equation

(γαDα + κ)9 = 0 (58)

whereα = 1, . . . ,4, with the same irrep forγ1, γ2, γ3 andγ4. In contradistinction to the case
of the respective set of equations following from (58), in each of the four equations (57) the
spinor components connected with∂z and withκ are the same. Consequently, the spherical
harmonic functions cannot be separated out from these equations and the couple of equations
containing only the two radial functions cannot be obtained.

The integration of the set of equations following from (1) for an electron in the Coulomb
field is conditioned by the exchange of the matrices assigned toγ3 and γ4 in the above
quoted representations [25, 27, 28]. This can be accomplished by an appropriate unitary
transformation. Consequently, we obtain the following representation for the generators of the
Clifford groupC4:

γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


γ3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ4 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


(59)

We observe that in this irrep the Hamiltonian in (22) is Hermitean. From (59) we
can calculate the respective matrices for the spin operatorEσ components:σx = −iγ2γ3,
σy = −iγ3γ1 andσz = −iγ1γ2, and with EL denoting the angular momentum operator we find
that the matrix forEL · Eσ has the form

EL · Eσ =


Lz 0 0 −iL−
0 −Lz iL+ 0
0 −iL− Lz 0

iL+ 0 0 −Lz

 (60)

whereL± = Lx ± iLy .
The eigenspinors of the operatorJz = Lz + Sz, with ES = h̄Eσ/2, which are of the form

8 =


C1 exp[i(mj − 1

2)ϕ]

C2 exp[i(mj + 1
2)ϕ]

C3 exp[i(mj − 1
2)ϕ]

C4 exp[i(mj + 1
2)ϕ]

 (61)

with Cp = Cp(r, ϑ), p = 1, 2, 3, 4, andϕ,ϑ denoting the angles of spherical coordinates, and
the half-integralmj = ml ± 1

2, can be rewritten in the form

8 =


fj (r)Y

mj−1/2
l (ϑ, ϕ)

gj (r)Y
mj+1/2
l′ (ϑ, ϕ)

f1j (r)Y
mj−1/2
l′ (ϑ, ϕ)

g1j (r)Y
mj+1/2
l (ϑ, ϕ)

 (62)

wherefj (r),gj (r),f1j (r) and g1j (r) are the radial functions whilel and l′ are the orbital
quantum numbers. The indicesl andl′ are assigned in agreement with the form of the operator
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EL · Eσ in (60). For brevity we will omit in the following formulae the indexj by the functions
fj , f1j andgj , g1j . Operating with EJ 2 = ( EL2 + 3h̄2/4 + h̄ EL · Eσ) on the spinor (62) and
remembering thatEJ 28 = h̄2j (j + 1)8, we obtain the equations:

Af (r) + iCg1(r) = j (j + 1)f (r)

B ′g(r)− iD′f1(r) = j (j + 1)g(r)

A′f1(r) + iC ′g(r) = j (j + 1)f1(r)

Bg1(r)− iDf (r) = j (j + 1)g1(r) (63)

with:

A = l(l + 1) + 3
4 + (mj − 1

2)

B = l(l + 1) + 3
4 − (mj + 1

2) (64)

C = D =
√
(l +mj + 1

2)(l −mj + 1
2)

and withA′, B ′, C ′ andD′ in (63) obtained fromA, B, C, andD, respectively, by replacingl
by l′. The condition for the non-zero solutions of (63) has the form

{[A− j (j + 1)][B − j (j + 1)] − CD}{[A′ − j (j + 1)][B ′ − j (j + 1)] − C ′D′} = 0 (65)

The solution of equations (63) forl = j − 1
2 andl′ = j + 1

2 leads to the spinors:

8
(a)
1 =


fj (r)Y

mj− 1
2

j− 1
2

0

0

−i

√
j −mj
j +mj

fj (r)Y
mj+ 1

2

j− 1
2

 8
(a)
2 =



0

gj (r)Y
mj+ 1

2

j+ 1
2

−i

√
j −mj + 1

j +mj + 1
gj (r)Y

mj− 1
2

j+ 1
2

0


(66)

where we have restored the indexj by the functionsf andg. A linear combination of spinors
from (66) also is a solution of the set of (63).

For l = j + 1
2, l′ = j − 1

2, the solution of (63) yields the spinors:

8
(b)
1 =


fj (r)Y

mj− 1
2

j+ 1
2

0

0

i

√
j +mj + 1

j −mj + 1
fj (r)Y

mj+ 1
2

j+ 1
2

 8
(b)
2 =



0

gj (r)Y
mj+ 1

2

j− 1
2

i

√
j +mj
j −mj gj (r)Y

mj− 1
2

j− 1
2

0


(67)

A linear combination of the spinors (67) also is a solution of the set of (63). The solution of
(63) for l = l′ = j − 1

2 is given by the pair8(a)
1 and8(b)

2 and by its linear combination and

for l = l′ = j + 1
2 by the pair8(b)

1 and8(a)
2 and by its linear combination.

For a free electron with the irrep in (59) we find for positive energies and positive or
negative helicity the respective spinor amplitudesC+ andC−:

C+ = R−1


η cos1

2ϑ e−iϕ/2

−i sin 1
2ϑ eiϕ/2

− cos1
2ϑ e−iϕ/2

iη sin 1
2ϑ eiϕ/2

 C− = R−1


η sin 1

2ϑ e−iϕ/2

−i cos 1
2ϑ eiϕ/2

sin 1
2ϑ e−iϕ/2

−iη cos1
2ϑ eiϕ/2

 (68)
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whereR =
√
V0(1 +η2) andV0 is the normalization volume, whilev/c = 2η/(1+η2), wherev

denotes the absolute value of electron velocity andc is the speed of light. In the non-relativistic
case, whenv � c, the respective large components of the two spinor amplitudes are:

C+ = R−1


0

−i sin 1
2ϑ eiϕ/2

− cos1
2ϑ e−iϕ/2

0

 C− = R−1


0

−i cos 1
2ϑ eiϕ/2

sin 1
2ϑ e−iϕ/2

0

 (69)

having the form of the spinors8(a)
2 and8(b)

2 in (66) and (67), respectively. For negative
energies the respective spinor amplitudesD+ andD− are:

D+ = R−1


cos1

2ϑ e−iϕ/2

iη sin 1
2ϑ eiϕ/2

η cos1
2ϑ e−iϕ/2

i sin 1
2ϑ eiϕ/2

 D− = R−1


− sin 1

2ϑ e−iϕ/2

−iη cos1
2ϑ eiϕ/2

η sin 1
2ϑ e−iϕ/2

i cos 1
2ϑ eiϕ/2

 (70)

Their large components have the form of8(a)
1 and8(b)

1 in (66) and (67), respectively.
There arises the question about the transformation of these four-component spinors under

three-dimensional spatial rotations. This can be answered by reference to [24] where the group
of rotations in Minkowski space extended by one real dimension, i.e. in(4 + 1)-dimensional
pseudo-orthogonal space was discussed. There is a four-dimensional irreducible double-valued
representation of these rotations, according to which first-rank, four-dimensional spinors
transform. For the subgroup of three-dimensional spatial rotations, this four-dimensional
irrep reduces to a block diagonal matrix, with twoSU(2)matrices along the diagonal. Under
three-dimensional rotations, the four-dimensional spinors transform according to that block-
diagonal matrix.

6. The variable (ωt + iω′u)/2

Referring to the end of section 4 we accept that the coordinatex5 is time-reversal and charge-
conjugation odd and space-inversion even. We writex5 = qcu, with c denoting the speed of
light in the vacuum, withCq = −qC andq2 = 1 andCu = uC, with u expressed in seconds.
Since the variablest andu behave in the same way under the operationsC, P andT , we can
introduce the complex variables:

ξ = 1
2(ωt + iω′u) ξ ∗ = 1

2(ωt − iω′u) (71)

with real frequenciesω andω′. We then have:

∂t = 1
2ω(∂ξ + ∂ξ∗) ∂u = i 1

2ω
′(∂ξ − ∂ξ∗) (72)

and withx4 = ict , x5 = qcu we obtain

∂4 ± i∂5 = 1

2ic

[(
ω ∓ i

q
ω′
)
∂ξ +

(
ω ± i

q
ω′
)
∂ξ∗

]
. (73)

These derivatives appear in the matrix form of the five-dimensional Dirac equation. We now
consider the scalar functionF of the complex variablesξ andξ ∗ in (71)

F(ξ, ξ ∗) = (cnξ + isnξ)(cnξ∗ + isnξ ∗) (74)

where cnξ and snξ are Jacobian elliptic functions, referred to the orthogonal axest and iu, with
real periods along thet-axis and imaginary periods along the iu-axis. The functionF(ξ, ξ ∗)
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does not vanish in the whole complex plane. From (74) and from the equality: sn2 ξ+cn2 ξ = 1,
it follows that for all values ofξ andξ ∗ we have

|F(ξ, ξ ∗)|2 = 1 for all ξ, ξ∗. (75)

Foru = 0, and for the vanishing modulusk of the elliptic functions we have

F(ξ, ξ ∗)→ exp(iωt) u = 0, k→ 0. (76)

Recalling that we have:dξsnξ = cnξdnξ , dξcnξ = −snξdnξ where dn2 ξ = 1− k2sn2 ξ ,
we obtain from (73) and (74) the expression

(∂4 ± i∂5)F (ξ, ξ
∗) = 1

2c

[
ω(dnξ∗ + dnξ)± iω′

q
(dnξ ∗ − dnξ)

]
F(ξ, ξ∗). (77)

From (77) we find that:

∂4F(ξ, ξ
∗) = ω

2c
(dnξ ∗ + dnξ)F (ξ, ξ∗) (78)

∂5F(ξ, ξ
∗) = ω′

2cq
(dnξ ∗ − dnξ)F (ξ, ξ∗). (79)

We now consider the case when the real periods of the functions snξ , cnξ and dnξ are much
smaller than their imaginary periods, which means that the modulusk fulfils the condition:
k � 1, which with the variablest andu expressed in the same units implies that the frequencies
fulfil the inequality

ω′ � ω. (80)

This allows the approximative expressions for the elliptic functions snξ , cnξ and dnξ to be
applied from [30] which are valid with the accuracy tok2-terms. These expressions will serve
in the calculation of the derivatives in (78) and (79). For brevity, in the following expressions
we replace the variablesξ , ξ ∗ in (71) by t + iu and (t − iu), respectively. We now firstly
utilize the formulae for the products of Jacobian elliptic functions [30] which appear in the
functionF(ξ, ξ ∗) in (74), and secondly the formulae relating the Jacobian elliptic functions
of an imaginary argument, connected with the modulusk, with those of a real argument,
connected with the modulusk′ = √1− k2. We next apply the approximate expressions for
the Jacobian elliptic functions of a real argument, valid fork � 1, and hencek′ close to 1.
With the accuracy tok2-terms we then find the expressions:

dn(t + iu, k) + dn(t − iu, k) = 2 + k2(sinh2 u− 2 sinh2 u sin2 t − sin2 t) = A (81)

dn(t + iu, k)− dn(t − iu, k) = −ik2 sinhu sin 2t = B. (82)

We now write the solution of (9) or (23) in the form

9 =


ψ1

ψ2

ψ3

ψ4

 =

φ1(Er)
φ2(Er)
φ3(Er)
φ4(Er)

F(ξ, ξ∗). (83)

Since the functionF(ξ, ξ ∗) does not vanish in the whole complex plane, we can remove it
from (9) or (23) after having performed the differentiation with respect tox4 andx5 according
to equations (78) and (79).

We now notice that owing to (80) the period of the variablet is very small compared to
that of the variableu. In the approximate expressions in (81) and (82) the periodic character
of the elliptic functions with respect to the variableu disappeared. It seems to be admissible
to average with respect to thet-variable the terms on the right-hand sides of (81) and (82). We
then obtain:

〈A〉 = 2− 1
2k

2 〈B〉 = 0. (84)
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These averages then enter into equations containing the derivatives∂4 and∂5. We see that if
a solution of the five-dimensional Dirac equation is written in the form of (83), then with the
accuracy tok2-terms the derivative with respect to the variablex5 vanishes, after averaging
over the variablet . Consequently, if averaging over the small-period variablet is accepted,
then with the accuracy tok2-terms the influence of the fifth dimension on the energy levels
will reduce to thek2-term in (84).

We notice that in the iterated equation in (25) the term−2iκ∂59 vanishes with the accuracy
to k2-terms, after averaging over the small-period variablet .

7. Electron in Coulomb and central gravitational fields

In (9) we putaµ = 0,µ = 1, 2, 3,a4 = iV/h̄c, a5 = W/h̄c, withW = mχ , and with the irrep
for theγαs in (59), we obtain the set of equations:

(∂x − i∂y)ψ4 + i∂zψ1 + [(V +W)/h̄c + κ]ψ3 = −(∂4 + i∂5)ψ3 (85)

(∂x + i∂y)ψ3 + i∂zψ2 − [(V −W)/h̄c − κ]ψ4 = (∂4 − i∂5)ψ4 (86)

−(∂x − i∂y)ψ2 − i∂zψ3− [(V −W)/h̄c − κ]ψ1 = (∂4 − i∂5)ψ1 (87)

−(∂x + i∂y)ψ1− i∂zψ4 + [(V +W)/h̄c + κ]ψ2 = −(∂4 + i∂5)ψ2. (88)

In (85) through (88) the energy and mass terms are connected with the same spinor component
as they are in the set of equations following from the original Dirac equation (58) with the
γα-irrep in [25, 27, 28]. We assume that a solution of this set of equations has the form in
(83). For the respective spinor componentsφα, α = 1, . . . ,4 we introduce those of the sum
of the spinors8(a)

1 +8(a)
2 in (66), denoted byφ(a)1 , φ(a)4 andφ(a)2 , φ(a)3 , respectively. From (85),

utilizing the expressions for the operators∂x ± i∂y and∂z in spherical coordinates (see, for
example, [27, 29]), for the first two terms on the left-hand side we obtain

(∂x − i∂y)φ
(a)
4 =

i

2

√
j −mj√
j +mj

[√
(j −mj + 1)(j −mj)√

(j + 1)j

(
f ′j −

j − 1
2

r
fj

)
Y
mj− 1

2

j+ 1
2

−
√
(j +mj − 1)(j +mj)√

j (j − 1)

(
f ′j +

j + 1
2

r
fj

)
Y
mj− 1

2

j− 3
2

]
(89)

with f ′ = df/ dr, and

i∂zφ
(a)
1 =

i

2

[√
(j −mj + 1)(j +mj)√

(j + 1)j

(
f ′j −

j − 1
2

r
fj

)
Y
mj− 1

2

j+ 1
2

+

√
(j +mj − 1)(j −mj)√

j (j − 1)

(
f ′j +

j + 1
2

r
fj

)
Y
mj− 1

2

j− 3
2

]
(90)

and, consequently

(∂x − i∂y)φ
(a)
4 + i∂zφ

(a)
1 = i

√
j (j −mj + 1)√
(j + 1)(j +mj)

(
f ′j −

j − 1
2

r
fj

)
Y
mj− 1

2

j+ 1
2

(91)

since the terms proportional toY
mj−1/2
j−3/2 cancel out. The spinor componentφ(a)3 in (66) is

proportional to the same spherical harmonic as that appearing in (91). We now divide both sides
of (85) by the term i

√
j −mj + 1, replace the functionfj (r) by [

√
(j + 1)(j +mj)/

√
j ]fj (r)

and the functiongj (r) by
√
j +mj + 1gj (r). Consequently, the left-hand side of (85) takes

the form

f ′j −
j − 1

2

r
fj −

(
κ +

V +W

h̄c

)
gj . (92)
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From the left-hand side of (88) we again obtain (92). For the first two terms on the left-hand
side of (86) we obtain

(∂x + i∂y)φ
(a)
3 = −

i

2

[√
(j +mj + 2)(j +mj + 1)(j −mj + 1)√

(j + 2)(j + 1)

(
g′j −

j + 1
2

r
gj

)
Y
mj+ 1

2

j+ 3
2

− (j −mj + 1)
√
(j −mj)√

(j + 1)j

(
g′j +

j + 3
2

r
gj

)
Y
mj+ 1

2

j− 1
2

]
(93)

with g′ = dg/dr, and

i∂zφ
(a)
2 =

i

2

[√
(j +mj + 2)(j +mj + 1)(j −mj + 1)√

(j + 2)(j + 1)

(
g′j −

j + 1
2

r
gj

)
Y
mj+ 1

2

j+ 3
2

+
(j +mj + 1)

√
(j −mj)√

(j + 1)j

(
g′j +

j + 3
2

r
gj

)
Y
mj+ 1

2

j− 1
2

]
(94)

and, consequently

(∂x + i∂y)φ
(a)
3 + i∂zφ

(a)
2 = i

√
(j −mj)(j + 1)√

j

(
g′j +

j + 3
2

r
gj

)
Y
mj+ 1

2

j− 1
2

(95)

since the terms proportional toY
mj+1/2
j+3/2 cancel out. Since the spinor componentφ

(a)
4 in (66) is

proportional to the same spherical harmonic as that appearing in (95), that spherical harmonic
is a common factor in (86) and it can be left out. We now divide both sides of (86) by the
term i

√
j −mj + 1 and next replace the functionfj (r) by [

√
(j + 1)(j +mj)/

√
j ]fj (r) and

the functiongj (r) by
√
j +mj + 1gj (r). The left-hand side of (86) then takes the form

g′j +
j + 3

2

r
gj −

(
κ − V −W

h̄c

)
fj . (96)

Equation (87) leads to (96). The right-hand sides of (85) and (86) (as well as of (87) and (88))
are determined by (78), (79) and (81) through (84). We obtain the terms±ω(1− k2/4)/c
with the (−) sign for (85) and the (+) sign for (86). Introducing these terms into (85) and (86),
respectively, and considering (92) and (96) we obtain the following couple of equations for
the radial functions:

dfj
dr
− j −

1
2

r
fj −

[
κ − ω

c

(
1− 1

4
k2

)
+
V +W

h̄c

]
gj = 0 (97)

dgj
dr

+
j + 3

2

r
gj −

[
κ +

ω

c

(
1− 1

4
k2

)
− V −W

h̄c

]
fj = 0. (98)

With:

V = −Ze
2

r
β = Ze2

h̄c

V

h̄c
= −β

r
(99)

and

W = −0Mm
r

δ = 0Mm

h̄c

W

h̄c
= −δ

r
(100)

where0 denotes the gravitational constant andM is proton rest mass, introducing the
parametersa andµ by the equalities

κ +
ω

c

(
1− 1

4
k2

)
= mc2 +E

h̄c
= 1

µa
(101)

κ − ω
c

(
1− 1

4
k2

)
= mc2 − E

h̄c
= µ

a
(102)
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where

E = h̄ω
(

1− 1

4
k2

)
(103)

we rewrite (97) and (98) in the form:

f ′j −
j − 1

2

r
fj −

(
µ

a
− β + δ

r

)
gj = 0 (104)

g′j +
j + 3

2

r
gj −

(
1

µa
+
β − δ
r

)
fj = 0. (105)

From this point on, these equations are integrated in the customary way (see, e.g.
[27, 29]). For r → ∞, (104) and (105) have the solutions:g(r) = C exp(−r/a) and
f (r) = −Cµ exp(−r/a), with C = constant, while forr → 0 we have:g(r) = Ars−1,
f (r) = Brs−1 with A, B andC being new constants, independent of those in section 5.
Inserting the latter solutions into (104) and (105) we find thats = [(j + 1/2)2− (β2− δ2)]1/2.
Writing:

g(r) = Crs−1 exp(−r/a)G(r) (106)

f (r) = −Cµrs−1 exp(−r/a)F (r) (107)

and inserting these functions into (104) and (105) we obtain the equations:

dG

dr
+

(
s + (j + 1

2)

r
− 1

a

)
G +

(
1

a
+
(β − δ)µ

r

)
F = 0 (108)

dF

dr
+

(
s − (j + 1

2)

r
− 1

a

)
F +

(
1

a
− β + δ

µr

)
G = 0. (109)

Writing:

G(r) + F(r) = v(r) G(r)− F(r) = w(r) (110)

we obtain from (108) and (109) the equations:

v′ +
s + p−
r

v = −
[(
j +

1

2

)
− p+

]
w

r
(111)

with v′ = dv/dr, and

w′ +
s − p−
r

w − 2

a
w = −

[(
j +

1

2

)
+ p+

]
v

r
(112)

with w′ = dw/dr, where

p± = µ(β − δ)
2

± β + δ

2µ
. (113)

From equations (111) and (112) we obtain the equation

rv′′ +
[
(2s + 1)− 2r

a

]
v′ − 2

a
(s + p−)v = 0 (114)

which is of the form of (202.12) on p 197 of [29] and which together with the respective
equation for the functionw leads to the condition

s + p− = −nr nr = 0, 1, 2, . . . (115)

and, consequently, to the energy-level formula

E = mc2[±(s + nr)
√
(s + nr)2 + β2 − δ2 − βδ]

(s + nr)2 + β2
(116)
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with s determined before (106), which forδ = 0 and the (+) sign before the first term, and
the modulusk = 0 in (103), turns into the customary energy-level formula. The energy in
(116) is identical with that which follows from (4.22) of [31], when the Bohm–Aharonov and
magnetic monopole potentials are left out in the latter.

The second solution of (85) and (86) connected with8(b)
1 + 8(b)

2 in (67) leads to the
respective following equations:

f ′j +
j + 3

2

r
fj +

(
1

µa
− β − δ

r

)
gj = 0 (117)

and

g′j −
j − 1

2

r
gj +

(
µ

a
+
β + δ

r

)
fj = 0. (118)

Exchanging in these equations the functionsfj andgj and replacingµ by−µ, we obtain from
(117) and (118), (105) and (104), respectively, thus determining the second solution which
belongs to the same energy level, determined by (116). We observe that the five-dimensional
form of the Klein–Gordon equation in (26) can be solved for the central-field case with the
help of the functionF(ξ, ξ ∗) in (74).

8. The Pauli equation

This equation will be derived from (9) in the manner of [23] without introducing a matrix irrep
for theγ s. We replace the spinor9 in (9) by the functionu in (16) which we factorize in the
form

u = wF(ξ, ξ ∗) (119)

with the functionw independent ofx4 andx5 and apart from that of the form ofu in (16), and
F(ξ, ξ ∗) in (74). With the help of (78), (79) and (81) through (84) we calculate the derivatives
with respect tox4 andx5, and withE in (104), andmc2 = E0 we obtain the equation[ 3∑

k=1

γk(∂k − iak)− γ4
E − V
h̄c

− iγ5
E0 +W

h̄c

]
w = 0. (120)

We write the functionw in (119) in the form:

w = (1 + iγ4γ5)w
+ + (1− iγ4γ5)w

− (121)

and notice that:

(γ4 ± iγ5)(γ4 ∓ iγ5) = 2(1∓ iγ4γ5) (122)

(γ4 ± iγ5)(γ4 ± iγ5) = 0. (123)

Introducing into (120) the functionw in (121), multiplying the resulting equation from
the left side firstly by(γ5 − iγ4) and secondly by(γ5 + iγ4), we obtain in the first case the
equation

3∑
k=1

iγ5γk(∂k − iak)w
+ − E − V − E0 −W

h̄c
w− = 0 (124)

and in the second case the equation:

3∑
k=1

iγ5γk(∂k − iak)w
− +

E − V +E0 +W

h̄c
w+ = 0. (125)
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To eliminate the functionw+ from this pair of equations we apply to (125) from the left the
operator

Q
h̄c

E − V +E0 −W =
3∑
k=1

iγ5γk(∂k − iak)
h̄c

E − V +E0 −W (126)

and obtain the equation

Q
h̄c

E − V +E0 −WQw− +Q
E − V +E0 +W

E − V +E0 −W w+ = 0 (127)

assuming thatW � E0 = mc2, and taking into account (124), we obtain the equation for the
functionw−

Q

[
h̄c

E − V +E0 −WQw−
]

+
E − V − E0 −W

h̄c
w− = 0. (128)

The first term in (128) splits into two terms:

I = h̄c

E − V +E0 −WQ2w− (129)

and

II = h̄c

(E − V +E0 −W)2
3∑
k=1

iγ5γk

(
∂V

∂xk
+
∂W

∂xk

)
Qw−. (130)

The first term is equal to

I = h̄c

E − V +E0 −W
[ 3∑
k=1

(∂k − iak)
2 +

e

h̄c
Eσ · EB

]
w− (131)

whereEσ = (σ1, σ2, σ3) in the Cartesian coordinates, as after (59), andEB = curl EA, with EA
denoting the vector potential. The second term is equal to

II = ce

(E − V +E0 −W)2 [ Eσ · ( EE × Ep)− i( EE · Ep)]w−

+
c

(E − V +E0 −W)2 [ Eσ · ( EF × Ep)− i( EF · Ep)]w− (132)

with ∂V/∂xk = −eEk, and Ep = (p1, p2, p3), in the Cartesian coordinates, with
pk = −ih̄(∂k − iak), k = 1, 2, 3 and ∂W/∂xk = −Fk. Adding (131) and (132), and
multiplying the resulting equation by ¯h(E − V +E0 −W)/(2mc), we obtain the equation[
h̄2

2m

3∑
k=1

(∂k − iak)
2 +

(E − V −W)2 − E2
0

2E0

]
w−

= −
[
eh̄

2mc
Eσ · EB +

h̄Eσ · [(e EE + EF)× Ep] − ih̄(e EE + EF) · Ep
2m(E − V +E0 −W)

]
w−. (133)

Omitting in this equationW and EF we obtain from it (20) on p 243 of [23], from which the
Pauli equation [32, 33] is derived. WithW � mc2, v � c andE +E0 − V −W ∼= 2mc2 we
have

(E − V −W)2 − E2
0

2E0

∼= E − V −W −mc2 +
m4v4

8m3c2
(134)
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and we obtain from (133) the Pauli equation containing electromagnetic and non-
electromagnetic fields in the form[ Ep2

2m
+E0 + V +W − m4v4

8m3c2
− eh̄

2mc
Eσ · EB

]
w−

+
h̄

4m2c2
{Eσ · [grad(V +W)× Ep] − igrad(V +W) · Ep}w− = Ew−. (135)

Since in (133) and (135) there only appear the products−iγiγj which generate the quaternion
group, we can replace the respective four-dimensional matrices representingσk, by the two-
dimensional Pauli matrices, and in the matrix form of (135) replace the four-component spinor
form of the functionw− by a two-component spinor.

To show thatw− is the larger function from the two functions appearing in (121) we write
Ep/m′ = Ev, with m′ denoting the velocity-dependent mass, andEγ = (γ1, γ2, γ3), and then
(124) and (125) acquire the respective forms

γ5 Eγ · Evw+ +
E − V − E0 −W

m′c
w− = 0 (136)

and

γ5 Eγ · Evw− − E − V +E0 +W

m′c
w+ = 0. (137)

Writing: E − E0 = 1E, E + E0 − V +W ∼= 2m′c2, 1E − V −W ∼= mEv2/2 we find from
(136) or (137) thatw+ ∼ (v/c)w−.

We observe that from the iterated equation forw− which follows from (124) and (125) and
from the expression for the spinor amplitudeC− in (68) specialized for the case of a zero-mass
particle, follows the two-component neutrino spinor.

9. Conclusions

A five-dimensional form of the Dirac equation has been discussed. It is related with the
alternative form of the original Dirac equation [1]. The five-dimensional equation is covariant
with respect to proper, orthochronous rotations in (4 + 1)-dimensional pseudo-orthogonal
space. Together with the electromagnetic potential it also contains a scalar non-electromagnetic
potential as the fifth component of the potential 5-vector. The requirement of invariance of
this five-dimensional equation under the combined operations of charge conjugation, space
inversion and time reversal leads to the conclusion that the real fifth coordinate has to change
its sign under charge conjugation and simultaneously either under time reversal or under space
inversion. Since we are dealing with flat space the latter possibility does not seem to lead to
experimentally acceptable consequences. This means that although in the metric expression
the fifth coordinate appears with the same sign as the three spatial coordinates, it has the
property of a time variable, differing from the ordinary time variable in also being odd under
charge conjugation. The odd character of the fifth coordinate under time reversal allows
for a new interpretation of its role in the five-dimensional equation. The exp(iωt) function
determining the time-dependence of a stationary state in Minkowski space is replaced by a
function constructed from doubly-periodic Jacobian elliptic functions of the complex-time
arguments(ωt ± iω′u)/2 with realω andω′. It is shown that in the limit of a vanishing
modulusk of the elliptic functions, the correction to the energy levels of an electron in
Coulomb and central gravitational fields stemming from the fifth dimension, is proportional to
k2. The integration of the equation containing central fields is conditioned by the application
of new four-component eigenspinors of the total angular momentum operator, with non-zero
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entries in the first and fourth or in the second and third row of the column matrix. These
spinors have to be used also for the integration of the alternative form of the Dirac equation
in (1) containing Coulomb field. This is due to the presence ofγ5 in that equation. The
iterated five-dimensional equation contains the antisymmetric second-rank tensor, defining the
electromagnetic and the non-electromagnetic field components. It can be shown that utilizing
this tensor, Maxwell–Nordström [3, 21] equations can be rederived. They then are in covariant
form with respect to five-dimensional rotations. It can also be shown that the odd character of
the real fifth coordinate under time reversal is implied by the Maxwell–Nordström equations,
if their invariance under time reversal is required. The Klein–Gordon equation, which is
contained in the iterated equation, can be integrated for central fields with the help of the same
function constructed from Jacobian elliptic functions as for the Dirac equation. The iterated
equation contains among other terms a new term determining the operator of the potential
energy of electron spin density in a non-electromagnetic field. The Pauli equation derived
from the five-dimensional equation contains a spin–orbit-type coupling term, depending on
the non-electromagnetic potential.
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